9 Jun 2018

Digital Modulation Techniques (ASK, FSK, PSK, BPSK) - Amplitude, Frequency and Phase Shift Keying

In this post we will discuss three kinds of digital modulation techniques that are- Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK).

So first of all let's understand, what is modulation?

Digital Modulation Techniques (ASK, FSK, PSK, BPSK) Video




What is Modulation- 

Modulation is a process, where some characteristic of the carrier wave (amplitude, frequency or phase) is varied in accordance with the instantaneous value of the modulating (message or baseband) signal.
So if amplitude of the carrier wave is varied, then it is called as amplitude modulation (AM), but if frequency or phase of the carrier wave is varied, according to the instantaneous value of the modulating signal, then it is known as frequency modulation (FM) or phase modulation (PM) respectively.

So now let's Understand the basic difference between continuous wave modulation and digital modulation-

Difference between Continuous Wave Modulation and Digital Modulation 


Amplitude Modulation (AM), Frequency Modulation (FM) and Phase Modulation (PM) are the examples of Continuous Wave (CW) modulation, while Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK) are examples of Digital Modulation Techniques. The basic difference between continuous wave Modulation and digital modulation techniques is based on the nature of message signal (modulating signal).

🌓READ THIS ALSO:-
#ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

In continuous wave modulation, the message signal is of analog nature but in digital modulation, the message signal is of digital nature (Binary or M-ary encoded version).
In both of these modulation techniques, the carrier wave is of analog form.
Here it is interesting to note that, the three forms of digital modulation techniques that is ASK, FSK and PSK are analogous to AM, FM and PM of continuous wave modulation respectively.

So now let's discuss each digital modulation technique (ASK, FSK and PSK) in detail-

Amplitude Shift Keying (ASK)


In ASK, the amplitude of the carrier wave is changed (switched) according to the digital input signal (modulating signal). Therefore amplitude shift keying is analogous to Amplitude Modulation (analog modulation).
ASK is analogous to AM, because in Amplitude Modulation (AM), amplitude of the carrier wave is changed according to the instantaneous value of the modulating (message) signal, in the same way in ASK also, the amplitude of the carrier wave is switched (varied) according to the instantaneous value of the modulating signal (digital input signal). The difference is only of the nature of the modulating signal. In amplitude modulation, the modulating signal is of analog kind but in digital modulation, it is a stream of digital bits.

🌓READ THIS ALSO:-
#PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

Now Let's understand the concept of amplitude shift keying (ASK) with the help of an example.
Look carefully the image shown below-


Amplitude Shift Keying, ASK, ASK Waveform, Amplitude Shift Keying (ASK) Waveform
Amplitude Shift Keying (ASK) Waveform

Here in this image observe that we are going to modulate a sinusoidal carrier wave (shown in green colour), with the digital input signal (0 1 1 0 0 1).
This image also shows the ASK waveform (modulated signal).
So now it's time to understand, how this amplitude shift keying takes place.
In amplitude shift keying, we change the amplitude of this sinusoidal carrier wave according to the digital input signal which is acting as modulating signal (message signal) here.
So the basic concept is, we do not transmit the carrier wave when the digital input signal is '0', and transmit the sinusoidal carrier as it is, for digital input signal '1'.

🌓READ THIS ALSO:-
#Quadrature Amplitude Modulation (QAM)/QAM Transmitter and QAM Receiver Block Diagram

You can observe this phenomena in the image carefully, that in this example, we have digital input signal '0', at three places, so for these three digital '0', no carrier signal has been transmitted. But for binary '1' at three places, the full carrier wave has been transmitted without any change.
Here the amplitude of the sinusoidal carrier wave is switched, as per the digital input signal. The carrier wave is either not transmitted or transmitted for digital input signal '0' or '1' respectively. That is why amplitude shift keying (ASK) is also called as "ON - OFF Keying (OOK)".
Now we will discuss the Frequency Shift Keying (FSK)

Frequency Shift Keying (FSK)


If the frequency of sinusoidal carrier wave is varied (switched) as per the digital input signal, then it is known as the frequency shift keying (FSK). It is analogous to frequency modulation (analog modulation).
The reason behind why FSK is analogous to FM, is....
In Frequency Modulation (FM), the frequency of the carrier wave is varied according to the instantaneous value of the modulating signal, in the same way in frequency shift keying also, the frequency of the sinusoidal carrier wave is varied (switched) as per the digital input signal. The difference is only of the nature of the modulating signal. In FM the modulating signal is of analogue nature while in FSK modulating signal is digital.

🌓READ THIS ALSO:-
#Watch large Collection of Engineering Video Lectures Here-

Now to understand the concept of frequency shift keying, look at the image shown below carefully-


Frequency Shift Keying, FSK, FSK Waveform, Frequency Shift Keying (FSK) Waveform
Frequency Shift Keying (FSK) Waveform

This image shows three parts-
#Digital Input signal (0 1 1 0 0 1)
#Sinusoidal carrier wave and
#FSK waveform

So here the basic purpose of Frequency Shift Keying (FSK), is to modulate (change/switch) the frequency of the carrier wave, according to the digital input signal.
Now observe the image, the places where digital input '0' is to be transmitted; the frequency of the sinusoidal carrier is decreased but when we transmit '1'; the frequency of the carrier wave is increased.
(Frequency is the number of cycles passed per second, or 1/Time period).
So in Frequency Shift Keying (FSK), we have two types of frequencies of the carrier wave, low frequency for the transmission of '0' and high frequency for the transmission of '1'.
In this way, in Frequency Shift Keying (FSK), the information of the digital input signal is present in the frequency variations of the carrier wave. That is why it is known as frequency shift keying.
Now let's discuss the Phase Shift Keying (PSK)

Phase Shift Keying (PSK)


In phase shift keying, phase of the carrier wave (analog) is varied as per the digital input signal. Phase shift keying is analogous to Phase Modulation (analog phase modulation).

🌓READ THIS ALSO:-
#PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

The phase shift keying is very much similar to Phase Modulation (PM), because in both of these modulation techniques, the phase of the carrier wave is changed, according to the instantaneous value of the modulating signal. The difference is only of the nature of the modulating signal. In phase modulation, the modulating signal is analog but in case of phase shift keying, modulating signal is of digital nature.
The carrier wave is of analogue kind in both of these modulation techniques.
Now we will understand the basic concept of Phase Shift Keying (PSK), with the help of an example shown in the image given below-


Phase Shift Keying, PSK, PSK Waveform, Phase Shift Keying (PSK) Waveform
Phase Shift Keying (PSK) Waveform

The Image contains three parts-
#The digital input signal (011001)
#The sinusoidal carrier wave (analog)
#PSK waveform

Now let's understand the basic concept, how the phase shift keying takes place-
In Phase Shift Keying (PSK), the phase of the carrier wave is changed (switched) according to the digital input signal. Therefore the information of this digital input signal is present in the phase shift variations of the carrier wave.

Now observe the image carefully-
Here we will Try to understand the concept of PSK with the help of an example given in this image. 
Notice here that, whenever the digital input changes the bit (either from '0' to '1' or from '1' to '0'), a phase shift of 180 degrees (Ï€) takes place in the carrier wave. But no phase change occurs when there is no change in the digital bit.
In this image, observe; the phase shift of 180 degrees takes place in the carrier wave at three places. At all these three places, the digital input bit has either change from '0' to '1' or from '1' to '0'. No phase shift takes place when two two successive (back to back) 1's or two successive 0's are to be transmitted (as per the image). Hence we get the PSK waveform in this way. 

This was all about three kinds of digital modulation techniques, amplitude shift keying, frequency shift keying and phase shift keying.

Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB - Comparison of AM Techniques - Types of Amplitude Modulation

Here we will discuss, What is Amplitude Modulation and various Amplitude Modulation Techniques.
The amplitude modulation systems may be of different types. Here the comparison of a Amplitude Modulation Systems (AM systems) has been discussed.

What is Amplitude Modulation (AM)

Amplitude Modulation may be defined as a system, where the maximum amplitude of the carrier wave varies, according to the instantaneous value (amplitude) of the modulating (message or baseband) signal.

Types of Amplitude Modulation

1- Conventional Amplitude Modulation (Conventional AM)
2- Double SideBand - Suppressed Carrier (DSB-SC)
3- Single SideBand - Suppressed Carrier (SSB-SC) and
4- Vestigial SideBand (VSB)

Amplitude Modulation Techniques Video


 

So let's understand the basic concept of all these various Amplitude Modulation systems and their comparison. Here we will also discuss where these Amplitude Modulation systems are used i.e. their applications in various fields.

So let's starts 
Let me first tell you, what these various Amplitude Modulation Techniques mean-

🌓READ THIS ALSO:-
#AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

Conventional Amplitude Modulation (Conventional AM)


In this modulation system the amplitude modulated signal contains carrier wave and 2 sidebands (upper side band and lower side band)

Double Sideband Suppressed Carrier (DSB-SC)


As clear by the name itself, the double sideband suppressed carrier contains only 2 sidebands and the carrier is suppressed (not present).

Single Sideband Suppressed Carrier (SSB-SC) 


The single sideband suppressed carrier contains only one sideband and no carrier is present. In this one sideband is suppressed.

Vestigial Sideband (VSB) 

In Vestigial sideband modulation, instead of rejecting one sideband completely (like SSB), a gradual cutoff of one side band is allowed.

Comparison of AM Modulation Techniques (Conventional AM vs DSBSC vs SSBSC vs VSB


1.Demodulation (detection) of conventional AM is easier than that of double sideband suppressed carrier and single sideband amplitude modulated systems. We can use rectifier or envelope detector to demodulate conventional amplitude modulation. Not only the demodulation of conventional AM is easy but also it is less expensive in comparison to other amplitude modulated systems.

🌓READ THIS ALSO:-
#FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

2. Conventional AM can be used for broadcasting services, because it is possible to produce conventional AM signals at high power levels.

3- Double sideband suppressed carrier and single sideband systems require lesser power to transmit the same information in comparison to conventional amplitude modulation (AM).
As we know that conventional AM contains two sidebands along with the carrier wave. Nearly 2/3rd of power is required to transmit this carrier wave and rest 1/3rd for the transmission of two sidebands. But it is important to note here that, the information is present only in the sidebands, the carrier contains no information. Although one sideband contains the full information and the other sideband is just the replica of it. So from this power point of view, conventional Amplitude Modulation is least efficient in comparison to other amplitude modulation techniques (schemes/systems)
🌓READ THIS ALSO:-
#AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

4- DSB-SC and SSB modulation systems are used in point-to-point communication while conventional AM finds application in public broadcasting systems. The double sideband - suppressed carrier and single sideband - suppressed carrier are but are much more Complex and expensive techniques. And it is always desirable for a broadcasting system to be very simple and less expensive. Because a broadcasting system contains 1 transmitter and serves millions of people while in point-to-point communication, we have 1 transmitter and few receivers.

5- following is the order of bandwidth required in various Amplitude Modulation systems-
Conventional AM > DSB-SC > VSB > SSB
It is clear from this order of bandwidth required that the single sideband is the most efficient modulation scheme.
It should also be noted here that, the bandwidth required for single sideband is only half of the bandwidth required for double sideband suppressed carrier and the bandwidth of vestigial sideband is nearly 25% higher than that of the single sideband but much lesser than double sideband - suppressed carrier.

6- Vestigial SideBand (VSB) signal generation is easiest in comparison to other techniques like conventional AM, double sideband - suppressed carrier and single sideband.

🌓READ THIS ALSO:-
#Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

7- VSB modulation scheme is used for the transmission of television signals while SSB is used for long distance transmission of voice signals, because it allows large spacing between the repeaters. The conventional Amplitude Modulation finds application mostly in public broadcasting services as it can be produced at higher power levels in comparison to other amplitude modulation techniques.


Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


4 Jan 2018

Sampling and Quantization of Signal - Sampling Theorem and Reconstruction of Signal

What is Sampling and Why Sampling is Required?

A continuous time signal at the transmitting end is converted into discrete time signal, it is done as it is easier to process digital signals in comparison to analog signals.


Sampling and Quantization of Signal Videos

 

 

What is Quantization of Signal

If we want to convert analog signals into digital signals then first of all continuous time signal is converted into discrete time signal with the help of sampling process and after this process, this sampled signal is converted into digital signal by the process of quantization.


Sampling Theorem

A continuous time signal can be completely represented in its samples and then can be recovered back, is the sampling frequency is greater than or equal to the twice of the maximum frequency present in the signal.
i.e. fs>=2fm
Here fs is sampling frequency
fm is maximum frequency present in the signal.
It is essential to take sufficient number of samples to completely represent a signal by its samples and also to reconstruct the signal back to its original form from its samples.


Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


Superposition Theorem | Basics, Applications and Limitations of Superposition Theorem

What is Superposition Theorem (Definition)

In an active linear network containing several sources (including dependent sources), the overall response (branch current or voltage) in any branch in the network is equal to the algebraic sum of the responses of individual source considered separately, with all other sources made inoperative, it means replacing them with their internal resistances or impedances.

Superposition Theorem (Basics, Applications and Limitations) Video


How to Make a Source (Voltage or Current Source) Inoperative?

To make a source inoperative, it is first short-circuited leaving behind it's internal resistance or impedance, if it is a voltage source.
But if it is a current source then it is open circuited leaving behind its internal resistance or impedance.

Applications and Limitations of Superposition Theorem

Applications of Superposition Theorem

1.The superposition theorem is applicable for any linear circuit having time varying or time invariant circuits.

2.It is also very useful in the analysis of circuits. The superposition theorem can be very useful when the circuit has large number of sources (current or voltage sources), to find the value of current or voltage in any branch of the circuit.

Watch the large collection of Video Lectures on Engineering Here-

Limitations of Superposition Theorem

1.It is not applicable when the circuit contains only dependent sources.

2.We cannot apply superposition theorem when a circuit contains nonlinear elements like diodes, transistors etc.

3.As we know that superposition theorem is applicable only for Linear networks, so it cannot be used for power calculations, since the power is proportional to the square (nonlinear) of current or voltage.

4.Superposition theorem is of no use if the circuit contains less than two independent sources.


Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


3 Jan 2018

Desirable Qualities of Optical Fiber Sources (LASERS and LED) and How to Choose Best Optical Fiber Source

A Good Optical Fibre Source Should have the Following Characteristics:


Here you will learn how to choose best optical fiber source like LASER or LED that has the best desirable qualities and is most efficient. 

1.Light source should be highly directional to make the launching of light into an optical fiber easy.

2.It should emit light at wavelengths where the optical fiber has low losses and low dispersion. The detectors should also be efficient at these wavelengths.

Optical Fiber Sources (Desirable Properties) - LASER and LED Video


 

3.It is also required that the optical source must couple enough optical power to overcome losses in fibre in the connectors. Not only this, after these losses enough power should be left to drive the detector.

4.The optical source should be linear to minimize the distortion and noise.


Amplitude Modulation Vs Frequency Modulation | AM Vs FM | Advantages and Disadvantages of AM and FM

What is Amplitude Modulation (AM)

Definition:-

Amplitude Modulation, is a system, where the maximum amplitude of the carrier wave varies, according to the instantaneous value (amplitude) of the modulating (message or baseband) signal.

What is Frequency Modulation (FM) 


In case of Frequency Modulation (FM) the frequency of the carrier wave varies according to the instantaneous value of the modulating (message) signal.

Comparison of AM and FM (AM vs FM)

Why FM is better than AM


Following reasons make the Frequency Modulation (FM) better than Amplitude Modulation (AM)

1.FM broadcasts operate in upper VHF (Very High Frequency) and UHF (Ultra High Frequency) ranges, while MF (Medium Frequency) and HF (High Frequency) ranges are used by AM broadcasts. This is a big advantage for FM, since in VHF and UHF frequency ranges there is less noise interference.


AM vs FM Video (Comparison of AM and FM) Video


 

2.FM receivers are more immune to noise in comparison to AM receivers. since FM receivers may be fitted with amplitude limiters. These amplitude limiters can remove the amplitude variations caused by the noise.

🌓READ THIS ALSO:-
#AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

3.In FM, it is possible to further reduce noise by increasing frequency deviation. This is not possible in case of AM, since in AM, we can not exceed 100℅ modulation without Severe distortions.

4.Standard Frequency allocations provide a guard band between commercial FM stations. This leads to less interference between adjacent channels in FM in comparison to AM.

5.In case of FM, all the transmitted power is useful but in AM, most of the power is present in carrier, that does not contain any information.