What is Sampling and Why Sampling is Required?
A continuous time signal at the transmitting end is converted into discrete time signal, it is done as it is easier to process digital signals in comparison to analog signals.Sampling and Quantization of Signal Videos
What is Quantization of Signal
If we want to convert analog signals into digital signals then first of all continuous time signal is converted into discrete time signal with the help of sampling process and after this process, this sampled signal is converted into digital signal by the process of quantization.
i.e. fs>=2fm
Here fs is sampling frequency
fm is maximum frequency present in the signal.
It is essential to take sufficient number of samples to completely represent a signal by its samples and also to reconstruct the signal back to its original form from its samples.
Read More-
Go To HOME Page
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)
AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)
ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM
ADVANTAGES OF OPTICAL FIBER COMMUNICATION
STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)
PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)
OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE
PULSE AMPLITUDE MODULATION (PAM)
COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES
PULSE WIDTH MODULATION (PWM)
CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)
NEED AND BENEFITS OF MODULATION
PULSE POSITION MODULATION (PPM)
OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS
OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)
AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)
PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]
SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)
SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)
Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying
Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)
Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram
Single-Mode Optical Fiber Advantages
What are Microwaves and their Applications (Uses) in various fields
Microwaves Properties and Advantages (Benefits)
Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties
Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)
Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)
Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)
Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working
Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation
Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)
Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits
Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)
Sampling Theorem
A continuous time signal can be completely represented in its samples and then can be recovered back, is the sampling frequency is greater than or equal to the twice of the maximum frequency present in the signal.
i.e. fs>=2fm
Here fs is sampling frequency
fm is maximum frequency present in the signal.
It is essential to take sufficient number of samples to completely represent a signal by its samples and also to reconstruct the signal back to its original form from its samples.
Read More-
Go To HOME Page
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)
AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)
ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM
ADVANTAGES OF OPTICAL FIBER COMMUNICATION
STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)
PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)
OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE
PULSE AMPLITUDE MODULATION (PAM)
COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES
PULSE WIDTH MODULATION (PWM)
CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)
NEED AND BENEFITS OF MODULATION
PULSE POSITION MODULATION (PPM)
OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS
OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)
AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)
PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]
SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)
SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)
Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying
Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)
Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram
Single-Mode Optical Fiber Advantages
What are Microwaves and their Applications (Uses) in various fields
Microwaves Properties and Advantages (Benefits)
Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties
Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)
Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)
Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)
Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working
Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation
Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)
Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits
Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)