4 Jan 2018

Sampling and Quantization of Signal - Sampling Theorem and Reconstruction of Signal

What is Sampling and Why Sampling is Required?

A continuous time signal at the transmitting end is converted into discrete time signal, it is done as it is easier to process digital signals in comparison to analog signals.


Sampling and Quantization of Signal Videos

 

 

What is Quantization of Signal

If we want to convert analog signals into digital signals then first of all continuous time signal is converted into discrete time signal with the help of sampling process and after this process, this sampled signal is converted into digital signal by the process of quantization.


Sampling Theorem

A continuous time signal can be completely represented in its samples and then can be recovered back, is the sampling frequency is greater than or equal to the twice of the maximum frequency present in the signal.
i.e. fs>=2fm
Here fs is sampling frequency
fm is maximum frequency present in the signal.
It is essential to take sufficient number of samples to completely represent a signal by its samples and also to reconstruct the signal back to its original form from its samples.


Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


Superposition Theorem | Basics, Applications and Limitations of Superposition Theorem

What is Superposition Theorem (Definition)

In an active linear network containing several sources (including dependent sources), the overall response (branch current or voltage) in any branch in the network is equal to the algebraic sum of the responses of individual source considered separately, with all other sources made inoperative, it means replacing them with their internal resistances or impedances.

Superposition Theorem (Basics, Applications and Limitations) Video


How to Make a Source (Voltage or Current Source) Inoperative?

To make a source inoperative, it is first short-circuited leaving behind it's internal resistance or impedance, if it is a voltage source.
But if it is a current source then it is open circuited leaving behind its internal resistance or impedance.

Applications and Limitations of Superposition Theorem

Applications of Superposition Theorem

1.The superposition theorem is applicable for any linear circuit having time varying or time invariant circuits.

2.It is also very useful in the analysis of circuits. The superposition theorem can be very useful when the circuit has large number of sources (current or voltage sources), to find the value of current or voltage in any branch of the circuit.

Watch the large collection of Video Lectures on Engineering Here-

Limitations of Superposition Theorem

1.It is not applicable when the circuit contains only dependent sources.

2.We cannot apply superposition theorem when a circuit contains nonlinear elements like diodes, transistors etc.

3.As we know that superposition theorem is applicable only for Linear networks, so it cannot be used for power calculations, since the power is proportional to the square (nonlinear) of current or voltage.

4.Superposition theorem is of no use if the circuit contains less than two independent sources.


Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


3 Jan 2018

Desirable Qualities of Optical Fiber Sources (LASERS and LED) and How to Choose Best Optical Fiber Source

A Good Optical Fibre Source Should have the Following Characteristics:


Here you will learn how to choose best optical fiber source like LASER or LED that has the best desirable qualities and is most efficient. 

1.Light source should be highly directional to make the launching of light into an optical fiber easy.

2.It should emit light at wavelengths where the optical fiber has low losses and low dispersion. The detectors should also be efficient at these wavelengths.

Optical Fiber Sources (Desirable Properties) - LASER and LED Video


 

3.It is also required that the optical source must couple enough optical power to overcome losses in fibre in the connectors. Not only this, after these losses enough power should be left to drive the detector.

4.The optical source should be linear to minimize the distortion and noise.


Amplitude Modulation Vs Frequency Modulation | AM Vs FM | Advantages and Disadvantages of AM and FM

What is Amplitude Modulation (AM)

Definition:-

Amplitude Modulation, is a system, where the maximum amplitude of the carrier wave varies, according to the instantaneous value (amplitude) of the modulating (message or baseband) signal.

What is Frequency Modulation (FM) 


In case of Frequency Modulation (FM) the frequency of the carrier wave varies according to the instantaneous value of the modulating (message) signal.

Comparison of AM and FM (AM vs FM)

Why FM is better than AM


Following reasons make the Frequency Modulation (FM) better than Amplitude Modulation (AM)

1.FM broadcasts operate in upper VHF (Very High Frequency) and UHF (Ultra High Frequency) ranges, while MF (Medium Frequency) and HF (High Frequency) ranges are used by AM broadcasts. This is a big advantage for FM, since in VHF and UHF frequency ranges there is less noise interference.


AM vs FM Video (Comparison of AM and FM) Video


 

2.FM receivers are more immune to noise in comparison to AM receivers. since FM receivers may be fitted with amplitude limiters. These amplitude limiters can remove the amplitude variations caused by the noise.

🌓READ THIS ALSO:-
#AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

3.In FM, it is possible to further reduce noise by increasing frequency deviation. This is not possible in case of AM, since in AM, we can not exceed 100℅ modulation without Severe distortions.

4.Standard Frequency allocations provide a guard band between commercial FM stations. This leads to less interference between adjacent channels in FM in comparison to AM.

5.In case of FM, all the transmitted power is useful but in AM, most of the power is present in carrier, that does not contain any information.

Pulse Code Modulation (PCM) | Advantages and Disadvantages of PCM | (Includes Video)

Pulse Code Modulation (PCM)


Here before discussing advantages and disadvantages of PCM, it's necessary to understand, what is Pulse Code Modulation (PCM). 

What is Pulse Code Modulation (PCM)


Pulse Code Modulation (PCM) is the digital form of pulse modulation technique. This form of pulse modulation technique is known as Pulse Code Modulation (PCM). Pulse code modulation is a technique to convert analog signals into digital signals.

Pulse Code Modulation (PCM) Video


After converting the signal into digital form, it becomes possible to transmit the digital signal through digital communication network and at the receiving end, it is converted back into it's original analog form.
Pulse code modulation process involves the following three stages -
1.Sampling of the signal
2.Quantization and
3.Coding

Following are the Advantages and Disadvantages of Pulse Code Modulation (PCM)


Advantages of Pulse Code Modulation (PCM)


1.Very high noise immunity

2.In pulse code modulation repeaters are used between the transmitter and receiver. Repeaters are used to regenerate the received PCM signal. Use of repeaters is possible due to digital nature of the signal.

3.Effect of noise is further reduced due to the use of repeaters.

22 Oct 2017

Optical Fibers in Communication | All you need to know about Optical Fibers (Includes Video)

Here we will discuss all the Basics of optical fibers that include its Basic Introduction, Structure and Working Principle, Communication Process of optical fibers, Types of optical fibers, Benefits, Losses and Dispersion in optical fibers. We will discuss here each topic one by one-

Optical Fibers in Communication Video [HD]

 


1.What is an Optical Fiber?

An optical fiber is a flexible and transparent fiber which is made by drawing glass (silica) or plastic.
Optical fiber has a diameter slightly thicker than that of a human hair.

2.Structure and Working of the Optical Fiber

Optical fibers are made of glass or plastic.
Most optical fibers used in communication have diameter of 0.25 mm to 0.5 mm including outer coating.

🌓READ THIS ALSO:-
#OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

Optical Fiber communication takes place between 0.8 micrometer to 1.7 micrometer of wavelength of electromagnetic spectrum.
Optical fibers have a transparent core which is surrounded by a transparent cladding and the cladding has a protective covering over it.
The image given below explains the concept of Total Internal Reflection (TIR) which is the phenomenon responsible for propagation of light inside the optical fiber.

Total Internal Reflection (TIR)  Phenomenon, TIR, Total Internal Reflection, optical fiber
Total Internal Reflection (TIR)
Phenomenon


Total Internal Reflection (TIR) Phenomenon, TIR, Total Internal Reflection, optical fiber
Total Internal Reflection (TIR)
Inside Optical Fiber

Based on the refractive index profile, there are two categories of optical fibers-
#Step Index Optical Fibers
#Graded Index Optical Fibers

In step index fibers, the refractive index profile makes a step change at the core-cladding interface.
In step index fiber if core has refractive index n1 and cladding has refractive index n2, then this condition holds-
n1>n2 
And this is necessary condition for Total Internal Reflection (TIR) in the optical fiber.
While the graded index fibers don't have a constant refractive index in the core but the refractive index of the core decreases with increasing radial distance from the core axis.

🌓READ THIS ALSO:-
#STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

It has maximum value of refractive index at the core axis that decreases as we move away from the core axis and becomes constant in the cladding.
The light rays travel inside the core by the phenomena of total internal reflection. Since the core has higher refractive index (n1) than that of cladding (n2), i.e. n1>n2.
So when the light rays fall on the core-cladding interface (moves from denser to rarer medium), it returns back into the core.
But for the Total Internal Reflection (TIR) to take place, it is necessary for the light rays to have incidence angle greater than the critical angle while moving from denser to rarer medium (core to cladding).

3.Optical Fiber Communication Process

Message that we want to transmit maybe non-electrical in nature (audio signal), so first of all it needs to be converted into electrical form using transducers.
Now the message converted into electrical form modulates an optical source. Ex. LASER or LED.

🌓READ THIS ALSO:-
#ADVANTAGES OF OPTICAL FIBER COMMUNICATION
#Step Index Vs Graded Index Fibers

After this the light rays containing message travel through the optical fiber by the phenomena of total internal reflection. Due to total internal reflection the energy loss is negligible inside the fiber while travelling.
Now at the receiving end, photodetectors like photodiodes or phototransistors etc., are used to convert the light signal back into electrical signal. Then the original message signal is retrieved from this electrical signal.

4.Types of Optical Fibers (Based on Modes of Propagation)

There are two types of optical fibers based on modes of propagation -
#Single Mode fibers (SMF)
#MultiMode fibers (MMF)
As clear by the name itself, the single mode fibers support only one propagation path, since they have very small diameter. While multimode fibers can support many propagation paths or transverse modes as they have larger diameter.
Single mode fibers are used for long distance communication while multimode fibers for short distance communication.
Single mode fiber provide greatest transmission bandwidth and lowest losses in communication.

5.Benefits of Optical Fibers

#Energy loss is negligible inside the optical fibers while propagation due to total internal reflection.
#Optical fibers provide very large potential bandwidth (since optical communication takes place at very high frequency (10^13-10^16).
#Optical fibres have small size, are lightweight and very flexible.

🌓READ THIS ALSO:-
#OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

#Optical fibers provide electrical isolation and are shock resistant. Since inside the fiber light propagates; not any electric current.
#Optical fibers provide high degree of signal security since these fibers do not radiate significantly unlike copper cables.
#Optical fibers are easy to maintain and the communication system is reliable.

6.Losses in Optical Fibers

Although the optical fibers have negligible losses in propagation but some losses are still present. These losses are the following-
#Material absorption
#Linear and nonlinear scattering
#Fibre bend losses


7.Dispersion in optical fibers

When light rays travel through the fiber, the phenomena of dispersion (broadening of transmitted light pulses), takes place. Because of this dispersion, each pulse broadens and overlaps with its neighboring pulses. Due to this, pulses become indistinguishable at the receiving end. This effect is known as Inter Symbol Interference (ISI).

🌓READ THIS ALSO:-
#Single-Mode Optical Fiber Advantages

The dispersion is of two types-
#Intermodal Dispersion
#Intramodal Dispersion
Here is the comparison of intermodal dispersion in different types of optical fibers- Multimode step index fiber> Multimode graded index fiber> Single mode step index fiber

Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


16 Oct 2017

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS) | Examples and Signal Diagrams

What is a Signal?

Definition of Signal 

A signal may be defined as a function of one or more independent variables like time, distance, position or temperature etc., that has some information about the phenomena that produced the signal.

🌓READ THIS ALSO:-

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

So in other words we can say, a signal is a function of independent variables having some information.
The signals maybe motion signals, sound signals, image signals or video signals etc.

Continuous Time and Discrete Time Signals Video [HD]

 

Signals can be classified into two types based on their characteristics in time domain-
Continuous Time Signals (C.T.)
Discrete Time Signals (D.T.)

Continuous Time Signals (C.T.)

A signal that is defined continuously with independent variable (time) is called a continuous time signal.

What is Modulation and why Modulation is Required | Need and Benefits of Modulation

Before understanding the need and benefits of modulation, it is important to know, what is modulation?

What is Modulation

Modulation is a process by which some characteristic (amplitude/frequency/phase) of a high frequency carrier wave is varied, in accordance with the instantaneous value of the message signal (modulating signal/ baseband signal).

🌓READ THIS ALSO:-
COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

Now let's write down the benefits of modulation. We will discuss each point in detail one by one-

What is Modulation and Why Modulation is Required Video [HD]

 

Need and Benefits of Modulation

1.To remove interference problem
2.Practical height of the antenna
3.Possibility of multiplexing
4.Long distance communication
5.Improved signal quality at the receiver

1.To Remove Interference Problem

Modulation helps in removing the interference problem by allocating a separate frequency band to different signal transmissions.
Because of this it becomes possible for many stations to transmit their message signals simultaneously without any interference.
Ex. The transmission range for audio signals is 20Hz-20kHz.

2.Practical Height of the Antenna

The height of antenna used for transmission and reception of the signal also depends on the process of modulation. The transmitting and receiving Antennas must have lengths, comparable to a quarter wavelength (λ/4) of the frequency used for transmission.

🌓READ THIS ALSO:-
#Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

To understand how the frequency used for transmission of the signal affects the height of the antenna. 
As mentioned earlier, height of the antenna should be comparable to λ/4 of the frequency used for transmission.
height of the antenna= λ/4
Since we know that-
c=λ.f
here c is speed of light in vacuum= 3×10^8 m/s
f is frequency
Therefore λ= c/f
So height of the antenna would be-
(c/f).(1/4) 
here c and 1/4 are constants
Therefore antenna height is inversely proportional to frequency used for transmission.
It means as the frequency of modulation increases, height of the antenna used for transmission decreases.
We Will understand it will the help of an example-
Here we will see, how the height of the antenna reduced when we increased the frequency used for transmission from 4kHz to 5MHz after modulation. 
Height= λ/4
             =(c/f).(1/4)
             = (3×10^8 m/s)/(4×10^3Hz)× (1/4)
=0.187×10^5 meters
= 18.7 kilometers !!!
This height of antenna is not practical.
After modulation-
Frequency used is 5MHz
H=(c/f).(1/4)
   =(3×10^8 m/s)/(5×10^6Hz)× (1/4)
=0.15×10^2 meters
15meters
It is practical height of the antenna.


3.Possibility of Multiplexing

Multiplexing can be Defined as a process by which two or more signals can be transmitted simultaneously over the same channel for communication.
Modulation can be used to allocate separate frequency bands by using career waves of different frequencies. This type of multiplexing is known as Frequency division multiplexing (FDM).

4.Long Distance Communication

Modulation is used for long distance communication. In modulation we use high frequency carrier wave for transmission of the message signal. 

🌓READ THIS ALSO:-
#ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

High frequency signals attenuate less as compared to low frequency signals. Therefore moderation is beneficial for long distance communication.

5.Improved Signal Quality At The Receiver

Some techniques of modulation like Frequency Modulation (FM), Pulse Code Modulation (PCM) have the capability to improve quality of the signal received at the receiving end. So it helps in reducing the noise level in the signal, which is a big advantage of modulation.

Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)


PULSE POSITION MODULATION (PPM) - Basics, Definition and Waveform of PPM

Pulse modulation can be categorized broadly into two types-
#Analog modulation and
#Digital modulation
The analog pulse modulation can again be of two types-

Pulse Position Modulation Video [HD]

 

#Pulse Amplitude Modulation (PAM)
#Pulse Time Modulation (PTM)
The Pulse Time Modulation (PTM) can further be classified into two types of modulation-
#Pulse Width Modulation (PWM)/Pulse Duration Modulation (PDM)
#Pulse Position Modulation (PPM)
Pulse Code Modulation (PCM) is a digital pulse modulation technique.