24 Dec 2018

Meridional and Skew Rays (Optical Fiber Communication)

There are two types of light rays on the basis of propagation inside the optical fiber- 
#Meridional Rays and
#Skew Rays (Helical Rays)

Here we will discuss propagation of both types of rays-

🌓READ THIS ALSO:-
Optical Fiber Communication (Complete)

Meridional Rays

*Meridional rays enter into the optical fiber through it's axis. 
*These rays cross the fiber axis at each reflection.


Meridional Rays, Propagation Inside Optical Fiber
Meridional Rays Propagation Inside Optical Fiber

The two diagrams given above show the propagation of meridional rays inside the optical fiber. The first diagram provides the ray path view along the fiber axis. It is clear from the diagram that the light ray is crossing the fiber axis at each reflection. These reflections are marked as 1, 2 and 3.

Meridional and Skew Rays Video

 

Another diagram is also of meridional ray propagation but with a different view. It is ray path view along the plane normal to the fiber axis.

Now let's discuss another kind of light ray propagation inside optical fibers i.e. Skew rays.


Skew Rays (Helical Rays)

*Skew rays are also known as helical rays as they move on helical path inside the optical fiber. 
*Skew rays do not cross the fibre axis and propagate around the optical fiber axis on zigzag path.
*Skew rays greatly outnumber the meridional rays. *Skew rays enter the optical fiber off the fiber axis.
It should be noted here that, in case of skew rays, the point of emergence from the fiber in air depends upon the number of reflections inside the optical fibre. It does not depend upon the input conditions to the fiber.

🌓READ THIS ALSO:-
OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

This concept is made clear with the help of two diagrams given below. 
Skew Rays, Helical Rays, Propagation Inside Optical Fiber
Skew Rays (Helical Rays) Propagation Inside Optical Fiber

The first diagram of skew ray shows the ray path view along the fiber axis and the second diagram shows the ray path view along the plane normal to the fiber axis.
It is clear from the second diagram that the skew ray (helical ray) is not crossing the optical fiber axis and propagating around the axis.

Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)




12 Dec 2018

Graded Index Fiber - Basics, Mathematical Formula, Structure, Working, Basic Principle, Dispersion and Benefits in Graded Index Optical Fiber

We have already discussed step index fibers. The other type of optical fiber based on the refractive index profile is the graded index fibre.
As we know that step index fibres make step (sudden) change in the refractive index at the core-cladding interface. The core has a constant refractive index that changes to a lower (constant) refractive index in the cladding.

Step Index Vs Graded Index optical fiber (Read more)

Now let's discuss the graded index fibres-



What is Graded Index Optical Fibre?
In graded index fibre the core has maximum value of the refractive index at it's axis and this value decreases on radially moving away from the core axis and has a constant value of refractive index in the cladding. Now let's see the mathematical representation of the Graded index fiber- 


Mathematical representation of Graded Index Fibre

Graded index fibers refractive index formula, graded index fibers
Graded index fibers refractive index formula

Refractive Index Profile Graph for Optical Fibers

Graded index fiber structure, working and refractive index profile graph
Graded index fiber structure, working and refractive index profile graph

This graph shows how the refractive index of graded index fiber varies as we move away from the core axis.
This graph shows different kinds of refractive index profiles like- step index profile, triangular profile and parabolic profile.
Here we will use the refractive index profile (alpha= 2) for the graded index fibre.
The diagram above shows, how the light rays travel inside the graded index fibre-

🌓READ THIS ALSO:-
Optical Fiber Communication (Complete)

As you can see in this diagram, that the optical fiber has two layers, core (shown in blue colour) and cladding (shown in green colour).
The propagation of light rays inside the graded index fibers also, takes place by the Total Internal Reflection (TIR) phenomena like step index fibres. But the propagation path of light is not exactly same as in case of step index fibres.

🌓READ THIS ALSO:-
Structure and Working of optical Fiber

The graph given in this diagram also shows how the refractive index of the core and cladding changes as we move away from the core axis. You can observe here that the refractive index of the cladding is constant (n2) while that of core varies parabolically.
As you now know that the refractive index of the core in graded index fibre varies smoothly therefore the propagation path of light also has a smooth path.


Propagation of light inside Graded Index Fiber (Dispersion in optical Fibers)

By the following Diagram you will clearly and easily understand how the light ray moves inside the graded index fibre and why it has a smooth propagation path.


Propagation of light inside graded index optical fiber
Propagation of light inside graded index optical fiber

The diagram shows only the core layer of the graded index fibre. As we know that as we move away from the core axis, the refractive index decreases until we reach the core-cladding interface. Therefore the refractive index has its maximum value at the core axis. So as the light ray moves from the core axis towards the core-cladding interface, it gets refracted continuously. As the light ray is moving continuously from a denser medium to rarer medium, it continuously deviates away from the normal when it goes away from the core axis and at some point this continuous deviation away from the normal causes the direction of the light ray turn back towards the core axis.
But when it returns back towards the core axis it continuously moves from rarer medium to denser medium and moves continuously towards the normal.

🌓READ THIS ALSO:-
Benefits of optical fibers

The light rays keep propagating in this way inside the core. This is known as the Total Internal Reflection (TIR). The total internal reflection is sharp (sudden) in case of step index fibre because the change in refractive index is sharp (sudden).


Benefits of graded index fiber and Dispersion

Observe the figure shown above. As the light rays travel slower in denser mediums (high refractive index) and we also know that refractive index in case of graded index fibers is maximum at the core axis and decreases as we move radially away from the core axis towards the core-cladding interface. 
We can transmit light rays at different angles into the optical fibre. So the light rays that travel near the core axis move slower in comparison to the light rays that travel near the core-cladding interfaces. 
You can easily understand this, that the light rays that travel near the core axis have to cover smaller distance in comparison to the rays that are close to the core-cladding interface. This creates a compensating effect in dispersion of light rays.

🌓READ THIS ALSO:-
Acceptance angle and Numerical Aperture (NA) in optical fibers

This phenomena is responsible for lower dispersion (broadening of light pulses) in case of graded index fibres in comparison to step index fibres because the light rays travelling at different angles reach at the receiving end almost at the same time. Because the light rays that need to travel longer distances (moving close to core-cladding interface) propagate at high speed because of lower refractive index (rarer medium) near the core-cladding interface. This reduces broadening (dispersion) of the light pulses.

Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)



Step Index and Graded Index Fibre - Comparison between Step Index and Graded Index Fibre (Optical Fiber Cable)

Here is the comparison between step index and graded index fibres on the basis of various parameters like basic structure, working principle, types, refractive index profile, propagation of light inside fibers, dispersion in optical fibers, advantages and disadvantages-

1. In step index fibers, sudden (step) change takes place in the refractive index at the core-cladding interface. The refractive index of the core is uniform
While in case of graded index fibers, refractive index of the core is non-uniform. It is maximum at the core axis and then it decreases (generally parabolically) with increasing distance from the core axis.

2. Step index fibers are of two types on the basis of modes-
#Single mode step index fiber
#Multimode step index fiber


Multimode Step Index Fiber, Single Mode Step Index Fibers
Multimode and Single Mode Step Index Fibers

🌓READ THIS ALSO:-
Optical fiber communication (Complete)

While on the basis of modes, only one type of graded index fibre is present i.e. Multimode graded index fibre.


Graded Index Fiber, Refractive Index Profile, Propagation of Light with TIR
Graded Index Fiber (Refractive Index Profile and Propagation of Light with TIR)

3. In step index fibres, light rays propagate in a zigzag manner (on zigzag path) inside the fiber Core. These rays travel as meridional rays. It means that the rays cross the axis of fibre for each reflection while propagating.

Step Index and Graded Index Fiber Video

 

But in case of graded index fibres, the light rays propagate as skew rays or helical rays. It means that while travelling inside the core these days do not cross the fibre axis.

🌓READ THIS ALSO:-
Optical fiber structure and working


4. In case of step index fibers the refractive index profile may be defined as-


 Refractive Index Profile of Step Index Fiber
Refractive Index Profile of Step Index Fiber

And in case of graded index fibers, the refractive index profile is defined as -


Refractive Index Profile of Graded Index Fiber
Refractive Index Profile of Graded Index Fiber

5. Modal dispersion is present that affects signal quality in case of step index fibres.
But the graded index fibres have very low or zero dispersion as the time taken by each mode to propagate is same. As the velocity of each mode is different due to change in refractive index.

Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)



10 Nov 2018

Source Transformation - Current Source to Voltage Source & Voltage Source to Current Source

Source Transformation

Here we will understand the concept of source transformation (source conversion).
You will learn here how it is possible to convert a voltage source to a current source and a current source to a voltage source.
While analyzing the circuits, it is easy and preferable to have same type of source - either voltage source only or current source only.


Watch the Complete Video on Source Transformation Here


For transformation, each voltage source should have a series internal resistance (impedance) and each current source a parallel internal resistance (impedance).
Here we will understand the concept of transformation of a voltage source to an equivalent current source and transformation of a current source to an equivalent voltage source.


Transformation of a voltage source to an equivalent current source-

The diagram shown below explains the voltage source to current source conversion.


Transformation of a voltage source to an equivalent current source, source conversion
Voltage Source to Current Source
Conversion

As we know that for transformation each voltage source should have a series internal resistance while a current source should have a parallel internal resistance.
As you can see in the diagram shown above, that this voltage source (V) is having an internal resistance (R) in series with it. So we can change this voltage source into its equivalent current source.
From the diagram you can see that to obtain current source from this voltage source we need to divide the value of voltage source by its internal resistance (V/R) and put this resistance (R) in parallel to this current source (V/R). 
Here observe that the direction of current source is same as that of the voltage source.
So in this way we can convert a voltage source into its equivalent current source.
Now we will discuss how to convert a current source into its equivalent voltage source


Transformation of a current source to an equivalent voltage source

The diagram given below will help you in understanding the concept of converting a current source into its equivalent voltage source.


Current Source to Voltage Source  Conversion, source transformation
Current Source to Voltage Source
Conversion

In the left part of this diagram you can see that, there is a resistance (R) in parallel to a current source (I). Consider it as its internal resistance. 
Now to convert this current source into voltage source, simply multiply the values of the current source and its internal resistance (IR) and place this resistance (R) in series with this current source. This transformation is clear by the diagram give below.
In this case also the direction of new voltage source is same as that of the current source.

So in this way we can inter-convert voltage and current sources easily as per our requirements.

Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)



9 Nov 2018

Demodulation of PWM and PPM (Block Diagram and Waveform) - PWM and PPM Detection - Pulse Modulation

This video is about the demodulation (detection) of pulse width modulation (PWM) and pulse position modulation (PPM). 
In this video you will learn the block diagram of PWM and PPM. The waveform of PWM & PPM will also be discussed here in this video lecture.
Here you should note that, to demodulate the pulse width modulation and Pulse position modulation, it is first required to convert the PWM and PPM into PAM signal. 
Then this pulse amplitude modulated signal is passed through a low pass filter (LPF) to receive the modulating (message) signal.



Read More-

Go To HOME Page
   
FREQUENCY SPECTRUM OF AMPLITUDE MODULATION (WAVEFORMS AND EQUATIONS DERIVATION)

AMPLITUDE MODULATION (TIME DOMAIN EQUATIONS AND WAVEFORMS)

ADVANTAGES AND DISADVANTAGES OF DIGITAL COMMUNICATION SYSTEM

ADVANTAGES OF OPTICAL FIBER COMMUNICATION

STEP INDEX OPTICAL FIBER (MULTIMODE AND SINGLE MODE STEP INDEX FIBERS)

PULSE MODULATION TECHNIQUES (PAM, PWM, PPM, PCM)

OPTICAL FIBER: STRUCTURE AND WORKING PRINCIPLE

PULSE AMPLITUDE MODULATION (PAM)

COMPARISON OF PAM, PWM, PPM MODULATION TECHNIQUES

PULSE WIDTH MODULATION (PWM)

CONTINUOUS TIME AND DISCRETE TIME SIGNALS (C.T. AND D.T. SIGNALS)

NEED AND BENEFITS OF MODULATION

PULSE POSITION MODULATION (PPM)

OPTICAL FIBERS IN COMMUNICATION: COVERS ALL IMPORTANT POINTS

OPTICAL FIBER SOURCES (DESIRABLE PROPERTIES)

AMPLITUDE MODULATION Vs FREQUENCY MODULATION (ADVANTAGES AND DISADVANTAGES)

PULSE CODE MODULATION (PCM) [ADVANTAGES AND DISADVANTAGES]

SAMPLING THEOREM AND RECONSTRUCTION (SAMPLING AND QUANTIZATION)

SUPERPOSITION THEOREM (BASICS, SOLVED PROBLEMS, APPLICATIONS AND LIMITATIONS)

Digital Modulation Techniques (ASK, FSK, PSK, BPSK)/ Amplitude, Frequency and Phase Shift Keying

Conventional AM Vs DSB-SC Vs SSB-SC Vs VSB (Comparison of AM Systems)

Quadrature Amplitude Modulation (QAM)/ QAM Transmitter and QAM Receiver Block Diagram

Single-Mode Optical Fiber Advantages

What are Microwaves and their Applications (Uses) in various fields

Microwaves Properties and Advantages (Benefits)

Basic Structure of Bipolar Junction Transistor (BJT) - BJT Transistor - Working and Properties

Polar Plots of Transfer Functions in Control Systems (How to Draw Nyquist Plot Examples)

Generation of Binary Phase Shift Keying (BPSK Generation) - Block Diagram of Binary Phase Shift Keying (BPSK)

Low Level and High Level Modulation Block Diagram (AM Transmitter Block Diagram)

Block Diagram of CRO (Cathode Ray Oscilloscope), Components of CRO and CRT with Structure and Working

Slope Overload Distortion and Granular (Idle Noise), Quantization Noise in Delta Modulation

Frequency Translation/Frequency Mixing/Frequency Conversion/Heterodyning (Basic Concepts and Need)

Quadrature Phase Shift Keying Modulation (QPSK) Basics, Waveform and Benefits

Pulse Code Modulation (PCM) Vs Differential Pulse Code Modulation (DPCM)